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ABSTRACT

This report describes the satellite tracking Kalman filter implemented
at the M.1.T. Lincoln Laboratory Firepond Infrared Research Facility at
Westford, MA. The filter estimates a six dimensional state vector for mount
direction from satellite observations. These observations can consist of
range, elevation, azimuth, and range rate; and under push-button control, can
be selected from among the available Firepond detectors (IR and optical) and
the Millstone radar across the road.

Radar polar coordinates are used throughout and, in particular, both
‘the estimates and the equations of motion are in these coordinates. The
filter is fully coupled in the sense that every measurement improves every
estimate. For example, angle measurements improve range and Doppler estimates,
and conversely. Serial processing of simultaneous measurements is employed.
This eliminates the need for matrix inversion, facilitates handling of missing
data points, requires less storage, and is computationally faster.

A detailed mathematical description of the filter is included along
with some typical satellite tracking results.
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I. INTRODUCTION
A Kalman filter for satellite direction has been designed, implemented,

and in routine mission operation at the M.I.T. Lincoln Laboratory Firepond
Infrared Research Facility ;n Westford, Mass. The filter accepts pre-smoothed
observations every tenth second and estimates an improved state vector from a
predicted state vector and these observations. The predicted state vector is
based on the equations of motion. Radar polar coordinates are used throughout
and the state vector is six dimensional with components R, E, A, ﬁ, é, A (range,
elevation, azimuth, and their rates respectively). The observation vector can
be up to four dimensional with components R, E,/\,ﬁ. These components are pro-
cessed sequentially, with time increment At = 0. This facilitates the handling
of bad or missing data points and avoids matrix inversion. Under push-button
control, the four (or less) observation components can be selected from the fol-
lowing data sources:

a. Millstone R, E, A, R

b. upper visible E, A

c. lower visible E, A

d. IR R, E, A, R
These can be mixed in any way with the exception that both angles must be from
one source. For cxample, the filter can accept Millstone range, lower visible
angles, and IR Doppler. If no observations are selected or available, the fil-
ter does a predict (i.e., coast) cycle without estimation. The filter is fully
coupled in the sense that every measurement component improves the estimation
of every state vector component. For example, angle measurements improve range
and Doppler estimates, and conversely.

All known biases (mount misalignment, refraction, etc.) are removed from
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observations before input to the Kalman filter. Based on these true observa-
tions the filter estimates a state vector, extrapolates it to the next tenth
second, again accounts for biases, and makes available a predicted state vector
which, at the option of the test director, can be used to direct the mount.
The Kalman track residuals are displayed (CRT) and recorded (strip chart) for
real-time viewing to help judge the quality of the Kalman track. The observa-
tions and filter estimates are also recorded on magnetic tape for post-mission
analysis.

The filter has been successfully used in a variety of missions. Some

typical results are shown in Section IV.
IT. PREPROCESSOR

1. Firepond Data

The function of the Firepond data preprocessor is to reduce data rates to
something the Kalman filter can handle in the available time. Recursive linear
least squares smoothing is performed on data between tenth second markers.
Smoothed values are updated to make them valid at the tenth second markers on
or immediately following the last sample in the smoothing interval. The smooth-
ing algorithm used is that due to N. Levine reported in Ref. 5 and, as herein
applied, assumes equally-spaced, equally-weighted samples.

The data samples fed to this smoothing algorithm are formed as indicated
below and the smoothing algorithm itself is outlined in Appendix D.

a. Range

An algorithm which computes range track offsets from early/late gate values
resides in the real time program but is not presently used. Instead, uncorrected
range encoder values at the PRI rate (250 pps maximum) are smoothed, updated, con-

verted to meters, and fed to the Kalman filter every tenth second.
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b. Range Rate
Doppler synthesizer frequencies and filter bank Doppler offsets are avail-

able at the PRI rate. These are combined, smoothed, updated, corrected for
relativistic and refraction effects, converted to m/sec, and fed to the Kalman

filter every tenth second.

c. Angles

The 50 pps angle track error components, according to tracker type, are

indicated below.

Tracker Error Components, 50 pps
IR Monopulse, scan mirror, transit time mirror
Lower Visible LV detector, scan mirror, transit time mirror

Upper Visible UV detector
The error components for the selected tracker are combined, smoothed, updated,
and added to refraction corrected angle encoder values at the tenth second
level. In the case of the lower visible tracker, the incremental refraction
mirror correction is also added at the tenth second level. The results are
converted to radians and fed to the Kalman filter every tenth second.
d. Updating

The tenth-second updating is done after the data samples are formed and
smoothed as indicated above. Smoothed values, X, are linearly extrapolated to
the next tenth second (indicated by the subscript ten) as:

Xw =X ¢ XAT .

The rates X are approximated from the Kalman filter estimated rates at the pre-
vious tenth second. The time increments AT are indicated below for R, E, A,




AT, = At - R/C

R

AT, AT, = At + R/C for upper visible
= At + 2R/C for lower visible and IR

AT. = At - R/C + PRI

R
where At = time between last datum in the smoothing interval

and the next even tenth second
R/C = transit time to target

PRI = one pulse repetition interval

The transit time and PRI terms are required by the hardware to make the samples
valid at target illumination time.

2. Millstone Data

The Millstone radar observations (RM, E‘M’ AM’ RM) are fully corrected and
are available at 15 pps. These are reduced to 10 pps by accepting data only at
the last time in a tenth second interval. These are then referenced to Firepond
and fed to the Kalman filter every tenth second.

The positional components (Rﬂ, F‘M’ AM) are first put in radar rectangular
coordinates (XM, R ZM) and then converted to Firepond rectangular coordinates

by the usual rotation and translation.
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The rotation matrix [A] is prestored in the real time program. The translation

vector (Bx, By, Bz) is also prestored (but with opposite sign sense). The Firepond-
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referenced rectangular components are then put in Firepond polar coordinates
(R; B, &)

The range rate component RM is referenced to Firepond as indicated in
Appendiz E. The transformation of the associated measurement accuracy weightings

to Firepond coordinates is neglected since the sites are so close.
ITI. THE KALMAN FILTER

1. Introduction

Included herein is a mathematical description of the Kalman filter as it
is presently implemented on the Real Time Program at Firepond. The filter al-
gorithm is a modification and extension of that described in Reference 1. The
block diagram in Figure 1 presents a convenient overview of the whole process.
This is followed by a description of each step in more mathematical detail.

The input observations to the filter consist of the tenth-second smoothed
and corrected R, E, A, and R samples. Also required are the covariance matrix

M of these measurements, an initial state vector and its covariance matrix.

The algorithm then consists of a process of prediction and estimation as in-
dicated in Figure 1. At each point in time the estimation requires a predicted
state vector (and its convariance matrix) along with an observation vector,
while the prediction requires an estimate of the last state vector (and its
covariance matrix) and the equations of motion.

State vector estimates are converted to Cartesian coordinates and placed
in the RTP target file for possible laser mount directing.

2. Equations of Motion

The equations of motion in radar polar coordinates are shown in Appendix A.

They appear therein as three coupled second order differential equations. These
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Fig. 1. Firepond Kalman Filter.




can be compactly written as the first order vector differential equation
x = f(x), x(t)) =x (1)

where x is the state vector with components R, E, A, R, E, A, and f is a six-

dimensional vector-valued function. The equation (1) and other items to follow

are written out in more explicit detail in paragraph 5.
3. Model
The assumed system model is represented by the pair of vector equations

(all vectors are column vectors)

x=f(x) +u (2)
vty
where

x 1is the 6-dimensional state vector

Yk is the 4-dimensional observation vector at time tk

u is a 6-dimensional state noise vector with zero-mean, independent

Gaussian samples and covariance matrix P = E[u, uT] \
Vi is a 6-dimensional observation noise vector with zero-mean, independent

Gaussian samples and covariance matrix M = E[v, VT]
H 1is a 4 x 6 matrix which transforms state coordinates to observation
coordinates.

4. Recursion Algorithm

The Kalman filter recursion algorithm consists of a prediction and an es-
timation. The notation gk/k-l is used to denote the state vector estimate at
time t, based on all measurements through t, . The prediction consists of

predicting the state gk/k_l and its covariance matrix Sk/k-l from the previous
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estimates gk_l/k_l, Sk-l/k-l along with the equations of motion and their par-
tial derivatives. The estimation consists of combining the predictions 3k/k-1'
Sk/k-l with the current measurement y, to obtain the improved estimates gk/k,
Sk/k valid at tys the time of the current measurement. This is described in
more detail below.

a. Partial Derivatives

The required partial derivatives are indicated below in compact vector
notation. They are presented more explicitly in paragraph 5 and in full
detail in Appendix B.

Differentiating the equations of motion (1) with respect to time we obtain

x= £(x
x=gkx-3k¢
Rrk-1 = Mk G- (3)
where
R
Ak g —az l =
_ X7 Xx/k-1
Differentiating with respect to x, , we obtain
x= £
O (dx). 3L 35_3
%1 &) = M
d (3 )_ 3f 3x
dt \3xy_; X Xy q
b= Ay )
where 3
X
¢ = 0(ty, Y q) = 35—
k K" k-1 Xy 1

b : = T e——1
.o




b. Prediction

Using (3) in a second order Taylor expansion we obtain the state vector

prediction
& ® 1 .. 2
B " Hana ' Han1 ¥ 72 M
S 1 2
"Bkt ERy ) A T A£G ) B8 )
or
Fo 1
-1 "Bt TV BT EG n ) B
The covariance matrix of the state estimate is predicted as
T = ¥
Spk-1 " % Braxg Pl . (6)

Using (4) in a first order Taylor expansion we obtain
e T e Ll S, R SR K

Setting ¢k-1 = | at each step the transition matrix Oy required in (6) is
computed as
o = I+ Ak-l R (7

c. Estimation

The estimation algorithm follows,

\
Rk ™ Be1 M O H )
% *Sna H' (H s W+l 8)

UG e - i




where

gk/k-l is the state vector estimate at time tk based on all

measurements through time te1

Sk/k-l is the covariance matrix (6 x 6) of the estimate gk/k-l'

Wy is the weighting or gain matrix (6 x 4)

o M is the (4 x 4) measurement noise covariance matrix E[v, !T].

The present implementation assumes that the measurement noise covariance M does

not change with time. If later desired this restriction can be easily removed.

5. Vectors and Matrices

This paragraph contains some of the vectors and matrices used above in the

more explicit and specializedAform that they appear in the computer implementation.

n" [R, E, A, RJE = observation vector

TR
x = [R, E, A, R, E, A] = state vector

£ = £, (0, £, ..., F1

= [P, E, A, R(), E(X), AT

10




= Measurement covariance

e (See Appendix B)
aR
9A

oE
%A

s, i




o = S At = transition matrix

Note that the transition matrix °k is fully coupled except for linearization
approximations.

The state driving noise matrix used is

-
|

e e oﬁ(é)

o
o

RS - e oé(é) 0

; PR R RO oﬁ(A)

*
The non-zero elements are computed from stored values of oy = oN//TU according

to data source as indicated below.

Data Source o;(l.!), m/s o;(fi), urad/s o;(;\), urad/s :
| i
Millstone .01 .10 .10
Upper Visible --- .01 .01
Lower Visible --- .001 .001
; ‘ IR .0001 .001 .001
;
12
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S is the 6 x 6 state estimate covariance matrix. The diagonal terms are the

variances of the estimates.

5 o2 (R) g » o (E) Syq = o2 (A)

S o (R) Seg = o% (E) See (A

The off-diagonal elements are symmetric and are the covariances of the

estimates.
i S, = cov(R,E)  S,3 = cov(E,A) S5, = cov(A,R) S, = Cov(R,E)  Sge = (E,A)
; i b,
f 513 = cov(R,A) 824 = cov(E,R) S35 = cov(A,E) S46 = cov(R,A)

S

14 cov(R,f{) SZS = cov(E,fE) 536 = cov(A,A)

S

15 cov(R,f-J) Szﬁ-cov(E,A)

S cov (R,:‘\)

16
The lower triangular elements are set equal to their symmetric elements to save
computation.

It is worth noting that, in the above, H takes on the particularly simple
form indicated because the state variables are in the same coordinates as the
observations. If this were not true H would become more complex. For example,
if the state variables were expressed in radar-centered rectangular coordinates
(x, ¥y, z), the observations wonld be nonlinear functions of the state.

R = R(x, y, 2)
E =E(x, y, 2)
A= A(x, y, 2)
R=R&x,y, z, X, ¥, 2)

13
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Linearization approximations would then be required and lead to the considerably

more complex H below.

o i
aR oR oR
x g)-, 3z 0 0 0
oE oF 9E
3% 3y 32 0 0 0
B (9)
9A 3A dA
= 3y Ty 0 0 0
3R 3R 3R 3R 3R R
— s Ap— - — —
) ay 9z 9X oy 9z 3

The indicated partials are written in full in Reference 2.

6. Data Editing

Dynamic data editing is performed by the filter. Data which deviate from
predicted values by more than dynamically computed threshold values are tagged
as bad and deleted from the estimation process. The threshold values are com-

puted as

So + ZoM

where o,, is the measurement accuracy for the particular sensor and o is

M
initially the a prioni state vector accuracy and subsequently the dynamically
computed state vector estimation accuracy. The pre-assigned accuracies are as

indicated below.

2k

14

=N PRI
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|
|
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Sensor R(m) E(ur) A(ur) R(m/s)
%a prioni All 5,000 100,000 100,000 500

oy IR 200 10 10 0.2 |
I
w 35 35 ;
LV 20 20 g
i

M 1,350 350 350 1.5

The action of the dynamic editing is to initially accept almost all data and
to become more selective as the filter estimates improve with track length.

Initially, o = and is large compared to Oy SO that threshold

%a priond

values are approximately 5 After a few seconds of track, o becomes

‘a priond”
small compared to Oy SO that the thresheld values become approximately 2 O
For example, lower visible data are initially edited with a threshold of
approximately 500,000 urad and, after a long track, with a threshold of

approximately 40 prad.
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IV. SQME RESULTS

The Firepond Kalman filter reported here was initially implemented with
Millstone data and later with Firepond visible and IR data. In this section
we present some results for two satellite track missions which indicate the
kind of results obtained with lower visible and IR Doppler data.

1. Mission 76079.0036

This was a Kalman track with lower visible angles only on object 5398
(LCS4) performed on 18 March 1976. The tracking crew consisted of L. Swezey,
R. Capes, and S. Catalano. This was a fifteen minute satellite pass with peak
elevation of 48.3°. The object was acquired at 8° above the horizon, put into
Kalman directing mode at 25° ascending, and held in the lower TV reticle down
to 8° for about nine minutes. The scan and transit time servos weré on but the
incremental refraction servo was not operational and left off. .

A post-mission orbit fit was done on about 8.5 minutes of the lower visible
angles with star calibration corrections applied. Kalman angle estimates were
within + 30 pyrad of the orbit values. To minimize the effect of not having
applied incremental refraction corrections to the visible angle data, the orbit
fit was repeated with only the data above 40° elevation (about three minutes of
data) where incremental refraction errors are less than 7 prad. the Kalman
angle estimates now agreed with orbit values to within about * 7.5 prad in
azimuth and + 5.0 yrad in elevation. Figures 2a and 2b show the corrected
lower visible angle observations fed to the filter and the corresponding Kalman
estimates. Zero levels represent the fitted orbit values. These results do
not preclude the possibility of linear biases in the system since the orbit

fit would adjust to such biases over this short an orbital excursion.

16
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Fig. 2a. Data Residuals (Orbit fit - LV observations), 76079.0036, LCS-4.
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Fig. 2b. Estimate Residuals (Orbit fit - Kalman estimates), 76079.0036, LCS-4.
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2. Mission 76098.0011

This was a Kalman track using lower visible angles and IR Doppler and was
performed on GEOS-IIT on 7 April 1976. It was a 14 minute pass with peak eleva-
tion of 63.8°. The tracking crew consisted of R. Capes, L.DiPalma, J. Linder,

R. McPherson, L. Swezey, and R. Teoste. The object was acquired in lower visible
angles from nominals and by about 32° elevation (going up) the filter was in good
track with this angles-only data. At about 41° IR Doppler hits commenced, ini-
tially intermi<tent and later steady. The filter immediately accepted these and
continued the track with this IR Doppler data in addition to the lower visible
data. At about 540, the mount was put in Kalman directing mode and remained in
this mode to the end of the pass, holding the IR beam on the object through peak
elevation, down to about 28° elevation, with long duration IR Doppler returns

for about four minutes in essentially ‘‘hands off'' mode.

An orbit fit was performed on the basis of the angle and Doppler measure-
ments. Figures 3a and 3b show the Kalman observations and estimates relative to
the fitted orbit. All measurements include corrections for servo errors (scan,
transit time, and incremental refraction), angle and Doppler tracker errors, and
star calibration misalignments. The azimuth residuals are contained within a
spread of about 50 urad while the elevation residuals are contained within a spread
of about 100 urad. Some of the funny shapes of these curves are probably due to
the star calibration corrections which were still in the process cf being improved.
The Doppler residuals are contained within a spread of about 0.5 m/s. The dis-
continuity of about 0.2 m/s occurs at peak elevation and was probably due to a

system bias.
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APPENDIX A

Equations of Motion

The equations of motion in this appendix are taken from Reference 3
with the drag terms (containing p) deleted. An ellipsoidal Earth (equatorial

radius a and flattening f) is assumed and the following symbols are used.

u geodetic site latitude

U . = geocentric site latitude

¢ = geocentric target latitude

R = Earth radius to "foot" of radar (see Fig. A-1)

f = Earth flattening = 2§éf§3.=’.00335289 (dimensionless)

e = Earth eccentricity [1 - e2 = (1 - f)z]

a = Earth equatorial radius = 6378145m

w = Earth rotation rate = 7.292 x 10™° radians/sec

M = product of gravitational constant and Earth mass =
3.985768 x 1014 m>/sec?

J = Earth second gravitational harmonic = 1.62 x 1073 (dimensionless)

The equations of motion then consist of the following set of three coupled

differential equations.

N g,
ReR(EZ+A%cos ) - 2u(EgVy-6aVp) - wi(gpr sino-tp) + R4 g gy

E - Z§E+szsin5cosﬁ+2 (EpVp-ELV,) + 2(5 ind- . &x7p - Wal)
xd w(EAVR-ERVA) * W (Eg T sin¢-rp) - 8:6

.. _1 . .. s . 7 gr
A=jicosi{ 2 (RACOSE-RAES inE) + 2u(EpVp:-EpVR) * wz(gAr sing-r,) - —%45 - ggkp)

22
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where

8¢
sin ¢

Re

He

B
S0 e 1% aa- B (- £ - Hoosh )

cos pu cos E cos A + sin p sin E
-cos usin E cos A + sin u cos E
- cos p sin A

é, Vg = Rﬁ, Vp = RA cos E

(Vg2 + V2 + v,y 1/2

R+ QR.sin E - Q,R.cos E cos A
Qch cos E + Qchsin E cos A
QZRCsin A Yo
cos (i - u2) ?'H/Ré"
sin (W -u.)

RAMR/R)? + 2(R/R) (@sin E - Qpeos E cos A) + Q) +
’_% (1 +3®% - s sin)

2@ y@? sin ¢

r
% {Rcos Ecos Acos u + (H+ R sin E) sin p + R. sin uc}
-1/2

1l - ezcos2 Hc

tan"l [(1 - €2) tan u)

& Feddan

e
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EAST

Fig. A-1. Earth-Sensor-Target Geometry.
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APPENDIX B

Partial Derivatives

This section presents in full detail the A-matrix partials indicated in
paragraph 5. The elements of the upper half A-matrix are trivial and already

shown. Therefore, only the lower half A-matrix elements are presented here.

The notation of Appendix A is adhered to and the ellipsoidal Earth model is
retained.

The following auxiliary partials are first required.

QD
~
=

ar.
R X i ¢ =
3 Rt(Ql cosE + Q, sinE cosA), A - RQ, cosE sinA

3TE arE

3 -R.C(Q1 sinE - Q2 cosE cosA), A -RCQ2 sinE sinA
EIA = R Q, cosA
9A &2

Utilizing these auxiliary partials, the lower half A-matrix partials are as

indicated below.

3R "rze""i w 2 .2 ae Ly
A415§_'_;z'_*2ﬁ(5AVE‘EEVA)‘°’ (ER“”*;X[“(T) ‘1]
|
25
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& 3" oo A g !
A42 B —a% = -2RA" sinE cosE + 2wRA (EE sinE + ER cosE)

2 : Tp
- w .CE (RER + r sing) - 3

()]
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APPENDIX C

Serial Estimation

At this point it is convenient to drop the double subscript notation

of the estimation algorithm (8) and re-write it as

W= s(-OHT[H S(-)HT + M1

x(*) =x(-)} + Wiy - Hx(-)] (1)

S(+) = S(-) - WH S(-)

The first of the above equations requires the inversion of a 4 x 4
matrix. Many matrix inversion schemes have been proposed and used. Originally,
the Firepond Kalman filter used an extended (for doppler) version of the
scheme suggested in Reference 1 which involves inversion after factorization
into diagonal matrices. This worked but was cumbersome in many respects.

For example, if one or more components of the observation vector were missing,
it was necessary to insert fictitious components with very low weights so as

to make their effect insignificant. The assigning of these low weights then
became a source of concern as to whether they would result in an ill-conditioned
matrix that might behave badly upon inversion. Another approach might have
been to reformulate the algorithm for cach specific situation (i.e., 3 x 3
inversion for one missing component, etc.). This seemed even more awkward.

The technique* that is currently used avoids the above difficulties.

It consists in regarding the four simultaneously occurring components of the
observation vector as having occurred serially over a time interval At = 0.

Then instead of one pass through the algorithm (1), requiring inversion of a

*First suggested to the author in Reference 4, p. 304, 305.
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4 x 4 matrix, a pass is made for each observation component, each pass
requiring only the trivial inversion of a 1 x 1 matrix. More explicitly four

passes are made through the algorithm with y, H, and M as indicated below.

1. y=R, H=[1,0,0,0,0,0],M=cg®
2. y=E, H=1[0,1,0,0,0, 0], M= oi(E)
3. y=A, H=1[0,0,1,0,0, 0], M= i)
4, y=R, H=1[0,0,0,1,0,0],M=c®

If an observation component is missing or bad, the pass for that component
is merely omitted. Each pass results in a six dimensional column weight
vector W which is applied to the old state vector x(-) and covariance matrix
S(-) to obtain the new ones, x(+), S(+). On the pass for the next observa-
tion component, the new x{+), S(+)replace the old x(-), S(-).

A simplified version of the FORTRAN code for processing four simula-
taneously occurring observation components through the algorithm (1),
in the described serial estimation mode, is shown below. The indicated FORTRAN

array allocation is assumed.

x(-) on entry = predicted state at observation time

e x(+) on exit = estimated state at observation time
y(4) = y, observation vector
D(4) = Data flags array, one flag for each component of y, with
a flag of 1 for observations which are to be included in
the estimation.
SIGMA(4) = %(Yi) = assumed measurement accuracies (standard deviations)
SP (6, 6) = S(+), the new covariance matrix
™M (6, 6) = S(-), the old covariance matrix

30
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DO 30 K=1, 4
RES = Y(K) - X(K)

IF (D(K) .NE. 1) GO TO 30

TERM = 1.D0/(SM(K, K) + SIGMA (K)**2)
DO10I=1,6

W = SM(I, K)*TERM

X(I) = X(I) + W*RES

D010 J=1, 6

10 SP(I, J) = M(I, J) - WeSM(K, J)
DO 20 M=1, 6
DO20 N=1,6

20 SM(M, N) = SP(M, N)

30 CONTINUE

The above code is for illustration only. The actual FIREPOND
implementation is close to the above but includes modifications which
improve the camputational speed (e.g., taking advantage of the symmetry

of the covariance matrix).

The serial estimation implementation of (1) gives the same answers
as the originally used 4 x 4 matrix inversion approach. However, the serial

estimation approach is superior on several counts.

1. It does not require a literature search for the best matrix

inversion scheme.
2. It requires less storage. The above code is very compact and
no storage is required for a matrix inversion routine.

3. It is considerably easier to implement and more flexible in the

31
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handling of missing or bad observation components.

It is computationally faster. This is due to the use of radar
polar coordinates, since in these coordinates the matrix H
takes on a particularly simple form (and in fact does not even
appear in the above code). However, in other coordinates, H
takes on the complex form (9) which would add considerably to

the computation.
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Appendix D

Pre-smoothing Algorithm

The pre-smoothing algorithm used here is that due to N. Levine reported
in reference 5. As used herein, it performs recursive linear least squares
smoothing on equally-spaced, equally-weighted data (with possible missing
points) and gives estimates of position and velocity valid at the last data
point. The algorithm is outlined below.

The following definitions are used:

the nth observation

>
]

its predicted value based on previous n-1 observations

its estimate after n observations

1 for a good data point and 0 for a bad or missing data point

= ®|
" "

xT where T is the constant data interval

=
n

=
"

predicted value of M based on n - 1 observations

estimated value of My based on n observations

=
"

Mathematically the algorithm can be written as follows:
Initial conditions: Fy = wp, G1 =H =J, =0

R, = X, ﬁl =0
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Recursion (n > 1): Fn = Fn—l + wn
Gn P Gn—l * Fal
Hn : Hn-l i 2Gn—l 4 Fn-l

n n-1 n

o - Hn/Jn, TR 3 Gn/Jn
2n T N L ﬁn ﬁ.n-l
L va -?(n)
Wy ow By * By O - %)

Program-wise, the computation is more efficiently organized as indicated below

where the notation A « B means A is replaced by B.

Initial conditions: F1 =W, G1 = H1 = J. =0
il = X, ﬁi = 0
Recursion (done in the indicated order):
Hn « Hn + ZGn ol
GGt
Fn « Fn o Wy

Jn B Jn 8 Wan
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&+ x - X))

|

%o n E “n Axn Hn/Jn

= o= . i
bh " " % Axn Gn/Jn

In this form previous values can share the same locations as present values.
All subscripts are therefore the same and can in fact be dropped. The quan-
tity Aih is the difference between observed and predicted value. If it exceeds
certain thresholds (90 km, 500 m/s, 10° for range, doppler, and angle, respec-
tively) the corresponding observation is deleted from the smoothing process

and in effect replaced by its predicted value by setting Aih = 0 in the last
two steps above. This editing is intended to guard against gross glitch-type
errors in the data. A count of the number of good observations in the tenth

second smoothing process is maintained.
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APPENDIX E

Millstone Doppler Coordinate Correction

Millstone range rate RM is converted to Firepond-referenced range rate
R as indicated below. Referring to the figure, let R, E, A be Firepond radar :

polar unit vectors. Then by vector definitions we have:

~

OBJECT e
v B =BR+B.E + B,A
’ > gR + BgE + B,
Ry SR
V= VR + ViE + VA
B =F-B
: MILLSTONE Ry =
FIREPOND B o
= (R - By) R - BE - BA
> >
VR,

Since éM = , we have

R

e
MRy [VR (R - Bp) 'VEBE'VABA]

Noting that,VR = R, the Firepond-referenced range rate, and solving, we get

i< Dyt B * P
s

In the above VE = Rﬁ, VA = RA cos E. The required angle rates E, A are taken

as the Kalman filter Firepond-referenced angie rate estimates. The baseline

-
ve.tor B is the translation vector of Section IT-2 with Firepond rectangular

components in meters known as:

Bx = 117.000, BY = -15.098, BZ = 16.901
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The required baseline components in radar-polar coordinates are obtained as:

B

BE -Bx sin E sin A - BY sin E cos A + BZ cos E

Bxcos E sin A + BY cos E cos A + BZ sin E

BA = Bx cos A - BY sin A

R, E, A are the Firepond-referenced Millstone measurements RM‘ EM' AM.
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